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Abstract

The decision functions constructed by support vector machines (SVM’s)
usually depend only on a subset of the training set—the so-called support
vectors. We derive asymptotically sharp lower and upper bounds on the
number of support vectors for several standard types of SVM’s. Our
results significantly improve recent achievments of the author.

1 Introduction

Given a training set� � ����� ���� � � � � ���� ���� with �� � � , �� � � �� ���� �� stan-
dard support vector machines (SVM’s) for classification (cf. [1], [2]) solve an optimization
problem of the form
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where is a reproducing kernel Hilbert space (RKHS) of a kernel� � ��� � � (cf. [3],
[4]), � �  is a free regularization parameter and� � � � ���� is a convex loss function.

Common choices for� are the hinge loss function���� �� 	���� ����, the squared hinge
loss function���� �� �	���� �� ���� and the least square loss function���� �� ��� ���.
The corresponding classifiers are called L1-SVM, L2-SVM and LS-SVM, respectively.

Common choices of kernels are the Gaussian RBF���� � �� � ��������� � ������ for
�� �� � �

� and fixed� �  and polynomial kernels���� � �� � �	�� ��
���� for �� �� � �
�

and fixed� � ,� � �.

If �	�	
� ��	
� �  � � denotes a solution of (1) we have
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for suitable coefficients���� � � � � �
�
� � � (cf. [5]). Obviously, only the samples� � with

��� ��  have an impact on	�	
. These samples are called support vectors. The fewer
support vectors	�	
 has the faster it can be evaluated. Moreover, it is well known that



the number of support vectors��� �	�	
� of the representation of	�	
 (cf. Section 3
for a brief discusssion) also has a large impact on the time needed to solve (1) using the
dual problem. Therefore, it is of high interest to know how many support vectors one
can expect for a given classification problem. In this work we address this question by
establishing asymptotically lower and upper bounds on the number of support vectors for
typical situations.

The rest of the paper is organized as follows: in Section 2 we introduce some technical
notions and recall recent results in the direction of the paper. In Section 3 our results are
presented and discussed, and finally, in Section 4 their proofs can be found.

2 Notations and known results

The standard assumption in classification is that the training set� consists of i.i.d. pairs
drawn from an unknown distribution� on��� . For technical reason we assume through-
out this paper that� is a compact space, e.g. a bounded, closed subset of�

� . A Bayes
decision function (cf. [6])	� � � � � is a function that�� -a.s. equals� and�� on
�� �� �� � � � � ���� � ���� and��� �� �� � � � � ����� � ����, respectively.
The corresponding classification error�� of such a function is called the Bayes risk of� .
Recall, that the Bayes risk is the smallest possible classification error.

A RKHS is called universal if is dense in the space of continuous functions����.
The best known example of a universal kernel is the Gaussian RBF kernel (cf. [7]).

Let us recall some results of the recent paper [8]. To simplify the statements, let us assume
that� has no discrete components, i.e.������� �  for all � � � . Furthermore, let� be
a continuous convex loss function satisfying some minor regularity conditions. Then it was
shown for universal RKHS’s and stritly positive nullsequences���� satisfying a regularity
condition that the following statements hold for all� �  and
��:
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In particular, this result holds for L1-SVM’s. Furthermore, for� being also differentiable
(e.g. L2-SVM’s and LS-SVM’s) it was proved
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where�� �� �� ��� � � �  � � ���� � ��� denotes the probability of the set of points
where noise occurs. Obviously, we always have� � � ��� and for noisy non-degenerate
� , that is for� with
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this relation becomes a strict inequality. We shall prove in the next section that (3) can
be significantly improved for the L1-SVM. We shall also show that this new lower bound
is also an upper bound under moderate conditions on� and . Furthermore, we prove
that (4) is asymptotically optimal for the L2-SVM and show that it can be significantly
improved for the LS-SVM.

3 New bounds

We begin with lower and upper bounds for the L1-SVM. Recall, that the problem (1) for
this classifier can be reformulated as

minimize �		� 	
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(5)



Instead of solving (5) directly, one usually solves the dual optimization problem (cf. [4])

maximize
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(6)

If ����� � � � � �
�
�� � � denotes a solution of (6) then	�	
 can be computed by (2). Note that

the representaion of	�	
 is not unique in general, i.e. using other algorithms for solving (5)
can lead to possibly sparser representations. However, in contrast to the general case the
representation (2) of	�	
 is ��-a.s. unique if the kernel is universal and� has no discrete
components (cf. [8]). Since our results for the L1-SVM hold for general kernels we always
assume that	�	
 is found by (6). Finally, for a loss function� and a RKHS we write
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where��	� �	� �� � ��	���� �
�
�	���

�
. Note, that	�	
����	
� cannot achieve an�-risk

better than��	�	� , if  is the RKHS used in (1). Now, our first result is:

Theorem 3.1 Let � be a continuous kernel on� and � be a probability measure on���
with no discrete components. Then for the L1-SVM using a regularization sequence ����
with �� �  and 
���� ���
�� and all � �  we have
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Remark 3.2 If � is a universal kernel we have��	�	� � ��� by the proof of [9,
Prop. 3.2] and thus Theorem 3.1 yields the announced improvement of (3). For non-
universal kernels we even have��	�	� � ��� in general.

Remark 3.3 For specific kernels the regularity condition
���� ���
 � � can be weak-
ened. Namely, for the Gaussian RBF kernel on� � �

� it can be substituted by

�� �����

���� � �. Only slightly stronger conditions are sufficient for��-kernels.
The interested reader can prove such conditions using the results of [9] for establishing (9).

Remark 3.4 If  is finite dimensional and
 � �
	 the representation (2) of	�	
� can
be simplified such that only at most�
	 kernel evaluations are neccessary. However,
this simplification has no impact on the time needed for solving (6).

In order to formulate an upper bound on��� �	�	
�� recall that a function is called an-
alytic if it can be locally represented by its Taylor series. Let� be a loss function,
be a RKHS over� and� be a probability measure on� � � . We call the pair��� �
non-trivial (with respect to�) if
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i.e. the incorporation of has a non-trivial effect on the�-risk of� . If  is universal we
have��	�	� � 
�����	� �	� 	 � � � �� (cf. proof of [9, Prop. 3.2]) and therefore
��� � is non-trivial if� has two non-vanishing classes, i.e.������ �  and������� �
. Furthermore, we denote the open unit ball of�

� by���. Now our upper bound is:

Theorem 3.5 Let be the RKHS of an analytic kernel on���. Furthermore, let� � ���
be a closed ball and � be a noisy non-degenerate probability measure on� � � such that



�� has a density with respect to the Lebesgue measure on � and ��� � is non-trivial.
Then for the L1-SVM using a regularization sequence ���� with �� �  and 
��� � �
we have
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in probability.

Probably the most restricting condition on� in the above theorem is that�� has to have a
density with respect to the Lebesgue measure. Considering the proof this condition can be
slightly weakened to the assumption that every���-dimensional subset of� has measure
zero. Although it would be desirable to exclude only probability measures with discrete
components it is almost obvious that such a condition cannot be sufficient for� � � (cf. [10,
p.32]). The assumption that� is noisy and non-degenerate is far more less restrictive since
neither completely noise-free� nor noisy problems with only “coin-flipping” noise often
occur in practice. Finally, the condition that��� � is non-trivial is more or less implicitly
assumed whenever one uses nontrivial classifiers.

Example 3.6 Theorem 3.5 directly applies to polynomial kernels. Note, that the limit
��	�	� depends on both� and the choice of the kernel.

Example 3.7 Let � be a Gaussian RBF kernel with RKHS and� be a closed ball of
�
� . Moreover, let� and���� be according to Theorem 3.5. Recall, that� is universal and

hence��� � is non-trivial iff � has two non-vanishing classes. Since� is also analytic on
�
� we find

��� �	�	
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Therefore, (4) shows that in general this L1-SVM produces sparser decision functions than
the L2-SVM and the LS-SVM based on a Gaussian RBF kernel (cf. also Theorem 3.11).

Remark 3.8 A variant of the L1-SVM that is often considered in theoretical papers is
based on the optimization problem (5) with a-priori fixed� �� . Besides the constraint��

��� ���� � , which no longer appears, the corresponding dual problem is identical to
(6). Hence it is easily seen that Theorem 3.1 also holds for this classifier. Moreover, for this
modification Theorem 3.5 can be simplified. Namely, the assumption that� is noisy and
non-degenerate is superfluous (cf. [8, Prop. 3.20] to guarantee (14)). Moreover, instead
of assuming
��� � � it suffices to suppose
��� � � (cf. again [8, Prop. 3.20]). In
particular, for a Gaussian RBF kernel and noise-free problems� we then obtain

��� �	�	
��



�  � (7)

i.e. the number of support vectors increases more slowly than linearly. This motivates the
often claimed sparseness of SVM’s.

The following theorem shows that the lower bound (4) on��� �	 �	
�� for the L2-SVM is
often asymptotically optimal. This result is independent of the used optimization algorithm
since we only consider universal kernels and measures with no discrete components.

Theorem 3.9 Let  be the RKHS of an analytic and universal kernel on ���. Further-
more, let � � ��� be a closed ball and � be a probability measure on � � � with
�� �  such that �� has a density with respect to the Lebesgue measure on � and
��� � is non-trivial. Then for the L2-SVM using ���� with �� �  and 
���� ���
��
we have
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��



� ��

in probability.



Remark 3.10 For the L2-SVM with fixed offset� ��  the assumption�� �  in the
above theorem is superfluous (cf. proof of Theorem 3.9 and proof of [8, Prop. 3.20]). Fur-
thermore, it suffices to assume
��� � � instead of
���� ���
� �. In particular, for a
Gaussian RBF kernel and noise-free problems� we obtain (7), i.e. for noise-free problems
this classifier also tends to produce sparse solutions in the sense of Remark 3.8.

Our last result shows that LS-SVM’s often tend to use almost every sample as a support
vector:

Theorem 3.11 Let  be the RKHS of an analytic and universal kernel on ���. Further-
more, let � � ��� be a closed ball and � be a probability measure on � � � such that
�� has a density with respect to the Lebesgue measure on � and ��� � is non-trivial.
Then for the LS-SVM using���� with �� �  and 
���� ���
�� we have

��� �	�	
��



� �

in probability.

Remark 3.12 Note, that unlike the L1-SVM and the L2-SVM (with fixed offset) the LS-
SVM does not tend to produce sparse decision functions for noise-free� . This still holds
if one fixes the offset for L2-SVM’s, i.e. one considers regularization networks (cf. [11]).
As often claimed and never proved the reason for the different behaviours is the margin:
the assumptions on and� ensure that only a very small fraction of samples� � can be
mapped to�� by 	�	
� (cf. also Remark 4.1). For the L2-SVM this asymptotically ensures
that most of the samples are mapped to values outside the margin (cf. the properties of
�� �  Æ in the proof of Theorem 3.9) and it is well-known that such samples cannot be
support vectors. In contrast to this the LS-SVM has the property that every point not lying
on the margin is a support vector. Using the techniques of our proofs it is fairly easy to see
that the same reasoning holds for the hinge loss function compared to “modified hinge loss
functions with no margin”.

4 Proofs

Let � be a loss function and� be a training set. For a function	 � � � � we denote the
empirical�-risk of 	 by
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Proof of Theorem 3.1: Let �	�	
� � ��	
� � �
�� �  � � � �

� and�� � �
� be solutions

of (5) and (6) for the regulariztion parameter��, respectively. Since there is no duality gap
between (5) and (6) we have (cf. [4]):
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By (2) this yields
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Furthermore, recall that�� �  and
���� ���
�� implies

�
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in probability for
�� (cf. [9]) and hence for all� �  the probability of
��
���

��� � ��	�	� � � (10)

tends to 1 for
 � �. Now let us assume that our training set satisfies (10). Since
��� � ��
 we then find
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which finishes the proof.

For our further considerations we need to consider the optimization problem (1) with re-
spect to� , i.e.

���	
�
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���

��	��� ���	� �	 � �� � (11)

We denote a solution of (11) by�	�	
� ��	
�.

Proof of Theorem 3.5: Since is the RKHS of an analytic kernel every function	 �  is
analytic. Using the holomorphic extension of a non-constant	 �  we see (after a suitable
complex linear coordinate change, cf. [10, p. 31f]) that for� � � and� �� � � � � ���� � � the
equation	���� � � � � ����� ��� � � has at most! solutions��, where! �  is locally (with
respect to��� � � � � ���� � �) constant . By a simple compactness argument we hence find

��
�
�� � � � 	��� � ��

�
�  � 	��� � � �� -a.s. (12)

for all 	 �  and all� � �. Now, let us suppose that
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for some� � , where	� denotes the Bayes decision function. Then we may assume
without loss of generality that��

�
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 � ��

�
�  holds. By (12)

this leads to	�	
��� � ��	
 � � �� -a.s. However, since��	� �	�	
 � ��	
� � ��	�	�

for ��  (cf. proof of [9, Prop. 3.2]) we see that	�	
 cannot be constant for small� since
��� � was assumed to be non-trivial. Therefore (13) cannot hold for small� �  and
hence we may assume without loss of generality that
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holds for all
 � �. Writing

 Æ ��
�	
���

�
� � � � 	�	
���� � ��	
� � 	� ��� � Æ

�
� Æ � 

there thus exists aÆ �  such that�� � Æ� � �. Let us fix a training set� �
����� ���� � � � � ���� ���� with

�	�	
� � ��	
� � 	�	
� � ��	
��� � Æ � (14)

��	� �	�	
� � ��	
�����	� �	�	
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 � � (15)

and 

�� � �� �  Æ�


 � � � 
 �

Recall (cf. [9], [8]), that the probability of such� converges to 1 for
 � �. Moreover,
by (8) we find
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Since	�	
� � ��	
� and	�	
� � ��	
� minimize the regularized risks, (15) implies
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 � � � (17)

By the proof of [9, Prop. 3.2] we have
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and therefore we obtain
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 � �� for large

. Now, (15), (17) and (18) implies��		�	
� � 	�	
�
 � �� for large
. Hence (16) yields
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if 
 is sufficiently large. Now let us suppose that we have a sample�� �� ��� of � with �� ��
 Æ . Then we have	�	
����� � ��	
� � 	� ���� � Æ and hence	�	
����� � ��	
� �� ��
by (14). By [4, p. 107] this means either��� �  or��� � ��
. Therefore, by (19) we find
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�� � �� ��  Æ and��� �� �




Since we have at most��
 samples in Æ we finally obtain

�



��� �	�	
�� � ��	�	� � �� �

Now the assertion follows by Theorem 3.1.

Remark 4.1 The proof of Theorem 3.5 is based on a kind of paradox: recall that it was
shown in [8] that

	�	
� � ��	
� � 	�

on
�
� � � � � ���� �� �� ���� ��

�
in probability. However, the assumption on both

and� ensures that for typical� the sets�
� � � � 	�	
���� � ��	
� � 	� ��� � Æ

�

become arbitrarily small forÆ � . We will apply these seemingly contradicting properties
in the following proofs, too.

Proof of Theorem 3.9: Let" �� �� � � �  � � ���� � �� be the subset of� where
� is noisy. Furthermore, let��� Æ� � �, where Æ is defined as in the proof of Theorem
3.5. We write

�� ��
�
� � �� �" � 	�	
���� � ��	
� � �� Æ

�

�
�
� � ��� �" � 	�	
���� � ��	
� � �� � Æ

�
�

By [8, Thm. 3.9] we may assume without loss of generality that������ � �� �� �"���
for all 
 � �. Let us fix a training set� � ����� ���� � � � � ���� ���� with

�	�	
� � ��	
� � 	�	
� � ��	
��� � Æ �

�� � �� � �� � Æ�


 � 


�
���� �"�� ��

�
�

Recall (cf. proof of [8, Prop. 3.25]), that the probability of such� converges to 1 for
 �
�. In view of (4) it suffices to show that every sample� � � �� �  Æ cannot be a support
vector. Given an�� � �� �  Æ we may assume without loss of generality that�� � ��.
Then�� � �� implies	�	
��������	
� � ��Æ while�� ��  Æ yields	�	
��������	
��
� � Æ. Hence we find	�	
����� � ��	
� � �� Æ and thus	�	
����� � ��	
� � �. By the
Karush-Kuhn-Tucker conditions of the primal/dual optimization problem of the L2-SVM
(cf. [4, p. 105]) the latter shows that� � is not a support vector.



Proof of Theorem 3.11: Let��� Æ� � �, where Æ is defined as in the proof of Theorem
3.5. Without loss of generality we may assumeÆ � �� ����. Let us define�� �� �� �
� � � ���� � ���� and

#� �
�
� � �� � 	�	
���� � ��	
�  � ���

�
�

By [8, Thm. 3.9] we may assume without loss of generality that���#�� � ������ � �
for all 
 � �. Now, let us fix a training set� � ����� ���� � � � � ���� ���� with

�	�	
� � ��	
� � 	�	
� � ��	
��� � Æ

�� � �� �  Æ�


 � � � 


�� � �� � #��


 � 


�
�� ����� ��

�
�

Again, the probability of such� converges to 1 for
 � � (cf. proof of [8, Prop. 3.25]).
Now let us consider a sample�� � �� � Æ���� of � . Then we have	�	
��������	
��
� � Æ and hence	�	
����� � ��	
� �� �. By [8, Rem. 3.19] this shows that�� is a support
vector. Obviously, the same holds true for samples� � � �� �  Æ� � ���. Finally, for
samples�� � #� we have	�	
������ ��	
�  � ���� Æ � � and hence these samples are
always support vectors.
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